


**CHARACTERIZATION OF BIOACTIVE SHIKIMIC ACID DERIVATIVES FROM
SENECIO OLEOSUS GUIDED BY DIAGNOSTIC IONS AND MOLECULAR
NETWORKING**

Nathália da Silva Malaco¹, **Thaíma Oliveira Souza e Silva^{1*}**, Anderson Valdiney Gomes Ramos¹, Bianca Del Bianco Sahm², Marta Regina Barroto do Carmo³, Letícia Costa Lotufo², Maria Helena Sarragiotto¹, Debora Cristina Baldoqui¹

ra141046@uem.br

1-Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR, Brazil, 2 Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, Brazil, 3-Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, PR, Brazil

Senecio is a large and chemically diverse genus comprising over 1,200 species. In Brazil, approximately 68 species are found, predominantly in rural and mountainous areas. This study aimed to investigate specialized metabolites of *Senecio oleosus* through isolation and dereplication strategies, and to evaluate the antiproliferative activity against tumor cell lines. Three new compounds were isolated: 3 α ,5 β -disenecioyloxy-4 α -dodecanoyloxyloxy-shikimic acid (**1**), 3 α -senecioyloxy-4 α -dodecanoyloxy-shikimic acid (**2**) and 3 α ,5 β -disenecioyloxy shikimic acid (**3**). The fragmentation patterns and diagnostic ions were established based on MS/MS spectra of these isolated compounds. The cleavage of ester linkages at positions C-3 and C-5 produced a fragment ion at m/z $M_{d11} = 120.02 + M_{ac} - 1$, corresponding to a shikimate core retaining the ester moiety at C-4. Subsequent loss of CO_2 yielded a fragment at m/z $M_{d12} = M_{d11} - 44$. The base peak at m/z $M_{d13} = M_{ac} - 1$ resulted from the loss of the fatty acid linked to C-4. Using these fragmentation patterns as a guide, and GNPS2 MS2 m/z highlight tool to emphasize fragment ions at m/z M_{d11} , M_{d12} and M_{d13} , fifteen tri-substituted shikimic acid derivatives were putatively identified. A similar strategy enabled the detection and partial structural elucidation of shikimic acid derivatives analogous to compounds **2** and **3**. Compound **1** exhibited promising results against the HCT116 cancer cell line, with an IC₅₀ of 10.5 $\mu\text{g mL}^{-1}$ (20.2 μM). Esterified shikimic acid derivatives were the predominant specialized metabolites in *S. oleosus*. In total, 35 derivatives were putatively identified, and triesterified analogues demonstrated promising anticancer potential.

Keywords: Metabolome, structural elucidation, diagnostic ions, GNPS2, Asteraceae, antiproliferative activity

